Lattice Boltzmann Pore-Scale Investigation of Coupled Physical-electrochemical Processes in C/Pt and Non-Precious Metal Cathode Catalyst Layers in Proton Exchange Membrane Fuel Cells
نویسندگان
چکیده
High-resolution porous structures of catalyst layers (CLs) including non-precious metal catalysts (NPMCs) or Pt for proton exchange membrane fuel cells are reconstructed using the quartet structure generation set. The nanoscale structures are analyzed in terms of pore size distribution, specific surface area, and phase connectivity. Pore-scale simulation methods based on the lattice Boltzmannmethod are developed to predict the macroscopic transport properties in CLs. The non-uniform distribution of ionomer in CL generates more tortuous pathways for reactant transport, greatly reducing the effective diffusivity. The tortuosity of CLs is much higher than that adopted by the Bruggeman equation. Knudsen diffusion plays a significant role in oxygen diffusion and significantly reduces the effective diffusivity. Reactive transport inside the CLs is also investigated. Although the reactive surface area of the nonpreciousmetal catalyst (NPMC) CL is much higher than that of the Pt CL, the oxygen reaction rate is lower in the NPMC CL due to the much lower reaction rate coefficient. Although pores of a few nanometers in size can increase the number of reactive sites in NPMC CLs, they contribute little to enhance the mass transport. Mesopores, which are a few tens of nanometers or larger in size, are shown to be required in order to increase the mass transport rate. ã 2015 Elsevier Ltd. All rights reserved.
منابع مشابه
High Pt Loading on Polydopamine Functionalized Graphene as a High Performance Cathode Electrocatalyst for Proton Exchange Membrane Fuel Cells
Morphology and size of platinum nanoparticles are a crucial factor in improving their catalytic activity and stability. Here, we firstly report the synthesis of high loading Pt nanoparticles on polydopamine reduced Graphene. The loading concentration of Pt (nanoparticles) NPs on Graphene can be adjusted in the range of 60-70%.With the insertion of polydopamine between Graphene oxide sheets, sta...
متن کاملImpact of anisotropy level of gas diffusion layer on the temperature distribution of a PEM fuel cell cathode electrode
Proton exchange membrane (PEM) fuel cells being employed in fuel cell vehicles (FCVs) are promising power generators producing electric power from fuel stream via porous electrodes. Structure of carbon paper gas diffusion layers (GDLs) applying in the porous electrodes can have a great influence on the PEM fuel cell performance and distribution of temperature, especially at the cathode side whe...
متن کاملIntroducing Pt/ZnO as a new non carbon substrate electro catalyst for oxygen reduction reaction at low temperature acidic fuel cells
Gas diffusion electrode was used for providing better conditions in fuel cell systems for oxygen reduction reaction (ORR). Because the slow kinetics of the oxygen reduction reaction at the proton exchange membrane fuel cell cathode restricts fuel cell efficiency. To this end, researchers have used platinum-coated carbon. In the present study, due to the reduction of carbon corrosion, Zinc oxide...
متن کاملIntroducing Pt/ZnO as a new non carbon substrate electro catalyst for oxygen reduction reaction at low temperature acidic fuel cells
Gas diffusion electrode was used for providing better conditions in fuel cell systems for oxygen reduction reaction (ORR). Because the slow kinetics of the oxygen reduction reaction at the proton exchange membrane fuel cell cathode restricts fuel cell efficiency. To this end, researchers have used platinum-coated carbon. In the present study, due to the reduction of carbon corrosion, Zinc oxide...
متن کاملThe Impact of Wettability on Effective Properties of Cathode Catalyst Layer in a Proton Exchange Membrane Fuel Cell
The produced liquid water in cathode catalyst layer (CCL) has significant effect on the operation of proton exchange membrane fuel cell (PEMFC). To investigate this effect, the transport of oxygen in CCL in the presence of immiscible liquid water is studied applying a two-dimensional pore scale model. The CCL was reconstructed as an agglomerated system. To explore the wettability effects, diffe...
متن کامل